In the September 1995 issue of the *Mathematics and Informatics Quarterly*, the following interesting result was mentioned without proof in the column on Forgotten Theorems:

Kosnita's Theorem. The lines joining the vertices A, B, and C of a given triangle ABC with the circumcenters of the triangles BCO, CAO, and ABO (O is the circumcenter of $ΔABC$), respectively, are concurrent.

On the basis of an often observed (but not generally true) duality between circumcenters and incenters (e.g. see De Villiers, 1996), I immediately conjectured that the following dual to Kosnita's theorem might be true, namely:

Kosnita Dual. The lines joining the vertices A, B, and C of a given triangle ABC with the incenters of the triangles BCO, CAO, and ABO (O is the incenter of $ΔABC$), respectively, are concurrent.

Investigation on the dynamic geometry program *Sketchpad* then confirmed that the conjecture was indeed true. I then found that both results could easily be proved by the following useful result for concurrency, a proof of which is given in De Villiers (1996). Interestingly, the point of concurrency for the special case with equilateral triangles on the sides is called the Fermat-Torricelli point.

Fermat-Torricelli Generalization. If triangles DBA, ECB and FAC are constructed on the sides of any triangle ABC so that $∠DAB = ∠CAF$, $∠DBA = ∠CBE$ and $∠ECB = ∠ACF$ then DC, EA and FB are concurrent (see Figure 1).
It should further be pointed out that the above result is also true when the triangles are constructed inwardly. As shown in Figure 2 we clearly have for Kosnita's dual that $\angle DAB = \frac{1}{4} \angle A = \angle CAF$, $\angle DBA = \frac{1}{4} \angle B = \angle CBE$ and $\angle ECB = \frac{1}{4} \angle C = \angle ACF$, and from the above result it therefore follows that DC, EA and FB are concurrent.

![Figure 2](image1)

![Figure 3](image2)
Kosnita's theorem follows a little less directly from the Fermat-Torricelli generalization. In this case, the "base triangle" is triangle DEF with A, B and C the outer vertices (see Figure 3). Since $DBOA$ is a kite, we have $\angle BDO = \angle ADO$. But $DBOE$ and $DOFA$ are also kites. Therefore, $\angle BDE = \frac{1}{2} \angle BDO$ and $\angle ADF = \frac{1}{2} \angle ADO$ from which follows that $\angle BDE = \angle ADF$. In a similar fashion can be shown that $\angle BED = \angle CEF$ and $\angle CFE = \angle AFD$. From the F-T generalization, it therefore follows that DC, EA and FB are concurrent.

Reference