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Generalizations involving Maltitudes
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This article presents a generalization of the concurrency of the maltitudes of a cyclic

quadrilateral, as well as a generalization of the Euler line to cyclic n-gons. The role of computer

exploration and proof in this discovery is also briefly discussed.

The maltitudes of a cyclic quadrilateral
Sometime ago the author came across a particular geometric diagram in a Polish high school

mathematics journal, which apparently had to do with proving that the intersections of the semi-

circles on adjacent sides of a cyclic quadrilateral with each other, lay on the diagonals of the

cyclic quadrilateral. This was not difficult to prove (and in fact is true for any quadrilateral), but

further analysis of the diagram led to the rediscovery of the following interesting, but not so

well-known theorem, and other related results.

Figure 1

                                    
1 As from January 2004, the University of Durban-Westville and the University of Natal have merged into a new
institution, the University of KwaZulu-Natal.
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Theorem 1
The perpendiculars from the midpoints of the sides of a cyclic quadrilateral to their

corresponding opposite sides are concurrent.

Although this result is listed in [1], no proof is given. A proof is therefore provided below.

Proof
Consider Figure 1 where ABCD is the given cyclic quadrilateral with P, Q, R and S the

midpoints of the sides as shown. Construct circles with centers at these midpoints and the sides

as diameters as shown. Label the intersection of circles P and Q as E, the intersection of circles

P and S as F, the intersection of circles R and S as G and the intersection of circles Q and R as

H.

Connect E with A and C. Since ∠AEB= 90°  in semi-circle P and ∠BEC= 90°  in

semi-circle Q, it follows that ∠AEC= 180° . Thus AEC is a straight line and E lies on the

diagonal AC. Similarly, it follows that G lies on AC, and F and H lie on the diagonal BC.

Since ABCD is cyclic, we have ∠ABD= ∠ACD on chord AD. But ∠FEG = ∠ABD

(exterior angle of cyclic quadrilateral ABFE) and ∠FHG = ∠ACD (exterior angle of cyclic

quadrilateral DCGH). Therefore ∠FEG = ∠FHG which implies that EFGH is cyclic.

From the preceding paragraph, we also have ∠FEG = alternate ∠ACD which implies

EF // DC. Similarly, GH // BA. Since BCHE is cyclic, ∠EHB= ∠ECB on chord EB. But

since EFGH is cyclic ∠EHB= ∠EGF  on chord EF. Therefore, ∠ECB=  corresponding

∠EGF  which implies FG // BC. In a similar fashion can be shown that EH // AD.

The perpendicular bisector of chord EF passes through midpoint P (center of circle)

according to an elementary theorem, and is perpendicular to CD (since EF // CD). It therefore

follows that the perpendicular from the midpoint P to the opposite side CD, coincides with the

perpendicular bisector of EF (the perpendicular from P to CD is unique). Similar conclusions

follow for the perpendicular bisectors of the other three sides of EFGH. But since EFGH is

cyclic, its perpendicular bisectors are concurrent, and therefore also the perpendiculars from the

midpoints of the sides of ABCD to its corresponding opposite sides.

Since the perpendicular from the midpoint of a side of a cyclic quadrilateral to its

opposite side is analogous to the concept of an altitude for a triangle, it is called a "maltitude". If

we further consider the special case where the cyclic quadrilateral degenerates into a triangle by

letting two vertices coincide, it is interesting to note that the perpendiculars from the midpoints

of two adjacent sides onto each other, are concurrent with the perpendicular from their common

vertex to the third side.

A generalization of the maltitudes
Theorem 1, involving the concurrency of the maltitudes of a cyclic quadrilateral, can be

generalized as follows.

Theorem 2
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For any cyclic quadrilateral ABCD, draw circle AEFB with center P and label its intersection

with AC and BD respectively as E and F. Next draw circle BEC with center Q and label its

intersection with BD as H, circle CHD with center R and label its intersection with AC as G,

and circle DGA with center S.

Then EFGH is cyclic, F lies on the circle DGA with center S and the perpendiculars

from P, Q, R and S respectively to the opposite sides of ABCD are concurrent.

Figure 2

Proof
Consider Figure 2 where ABCD is cyclic and the circles P, Q, R and S have been constructed

as described above. To prove that F lies on circle DGA with center S, it is sufficient to prove

that AFGD is cyclic.

It is left to the reader to check that exactly as before in Proof 1, it follows that EFGH is

cyclic, and that EF // DC and GH // BA. Also ∠ECB=  corresponding ∠EGF (which implies

that FG // BC). But ∠ADF = ∠ECB on chord AB; therefore ∠ADF = ∠EGF = ∠AGF  on

segment AF, which implies that AFGD is cyclic. In the same way as before, it now follows that

EH // AD and that the perpendiculars from P, Q, R and S to the corresponding opposite sides of

ABCD are concurrent.

Generalizing the Euler line to cyclic quadrilaterals
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Given that the orthocenter, circumcenter and centroid of a triangle are collinear on the Euler

line, it seemed reasonable to conjecture that for a cyclic quadrilateral the point of concurrency of

the maltitudes (its "orthocenter"), its circumcenter and its centroid would also be collinear.

Subsequent investigation with the dynamic geometry programme Sketchpad showed that this

was indeed the case. This "a priori" conviction then provided the motivation to start looking for

a proof, which is presented further on. Contrary to the way in which proof is normally

presented during teaching as a prerequisite for conviction, this episode demonstrated that in

mathematical research, conviction is often a prerequisite for proof.

Doug Hofstadter in [2] has similarly emphasized as follows that conviction can

be reached by other means than proof:

"By the way, note that I just referred to my screen-based observation as a "fact" and a

"theorem". Now any redblooded mathematician would scream bloody murder at me for

referring to a "fact" or "theorem" that I had not proved. But that is not my attitude at all, and

never has been. To me, this result was so clearly true that I didn't have the slightest doubt about

it. I didn't need proof. If this sounds arrogant, let me explain. The beauty of Geometer's

Sketchpad is that it allows you to discover instantly whether a conjecture is right or wrong - if

it's wrong, it will be immediately obvious when you play around with a construction

dynamically on the screen. If it's right, things will stay "in synch" right on the button no matter

how you play with the figure. The degree of certainty and confidence that this gives is

downright amazing. It's not a proof, of course, but in some sense, I would argue, this kind of

direct contact with the phenomenon is even more convincing than a proof, because you really

see it all happening right before your eyes. None of this means that I did not want a proof. In

the end, proofs are critical ingredients of mathematical knowledge, and I like them as much as

anyone else does. I am just not one who believes that certainty can come only from proofs."

Why does one still feel a need to prove a result like that above if one is already convinced of its

truth from investigation on computer? It seems that it is precisely because one is convinced of

its truth that one feels challenged to find a deductive proof, not because one doubts the result.

Why? Well, here was a result that was clearly true from experimental exploration on computer,

but the intriguing question of why it was true remained unanswered. If an exploration like that

above had not shown these points to be collinear, one would certainly not have wasted one's

time trying to find a proof (eg. one would have had counter-examples). In such cases, it would

seem that the search for, and eventual construction, of a deductive proof (explanation) should

be viewed as an intellectual challenge, definitely not as an epistemological exercise in trying to

establish its "truth".

As the concept of the centroid of a quadrilateral is perhaps not that well-known, it will

now first be discussed in relation to the following theorem.

Theorem 3
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Given any quadrilateral ABCD, then the respective centroids P, Q, R and S of triangles ABD,

ABC, BCD and CDA form a quadrilateral RSPQ, similar to the original, with lines AR, BS,

CP and DQ concurrent. (This point of concurrency (center of similarity) is defined as the

centroid of the quadrilateral).

Figure 3

Proof
Consider Figure 3 with P, Q, R and S the given centroids and K, L, M and N the midpoints of
the sides of ABCD as shown. Then KP = 1/3 KB and KS = 1/3 KC. Therefore SP // BC and

SP = 1/3 BC. Similarly, it follows that PQ //= 1/3 CD, QR //= 1/3 DA and RS //= 1/3 AB.

Since corresponding sides are parallel, it follows that angles R, S, P and Q are respectively

equal to angles A, B, C and D. Therefore, RSPQ is similar to ABCD (corresponding angles

equal, and corresponding sides in same ratio). Since two similar polygons are called homothetic

if the corresponding sides are parallel, we can further say that RSPQ is homothetic to ABCD.

Then from a theorem that the lines joining corresponding vertices of two homothetic polygons

are concurrent (eg. see [3] or [4]), it follows that lines AR, BS, CP and DQ are concurrent (at

the centroid G).

Corollary
Another interesting result related to Figure 3 that we will use in Theorem 4 below, is that the

lines LN and KM (the diagonals of the Varignon parallelogram KLMN) are concurrent with the

centroid G. This can be proved as follows.

In ∆ MAD, QR // DA and since K bisects DA, KM bisects QR in K'. Similarly, LN

bisects RS in L'. Now since the same similarity which maps ABCD to RSPQ respectively map

L to L' and K to K', the lines LL' and KK' are concurrent at the same center G. Therefore G

coincides with the intersection of LN and KM, the Varignon center of parallelogram LKMN.
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Theorem 4
The orthocenter (H), circumcenter (O) and centroid (G) of a cyclic quadrilateral are collinear,

and the centroid bisects the segment OH.

Figure 4

Proof
Consider the cyclic quadrilateral ABCD given in Figure 4, with O as the circumcenter, G as the

centroid and H as the orthocenter. K, L, M and N are the respective midpoints of the sides.

Consider quadrilateral LHNO. Since both LH and ON are both perpendicular to CD by

construction, it follows that LH // ON. Similarly, OL // NH which implies that LHNO is a

parallelogram. Since G coincides with the midpoint of LN as we saw in the previous result, it

follows that G must lie on diagonal OH of parallelogram LHNO; i.e. O, G and H are collinear.

(Also note that GH = OG, whereas for a triangle GH = 2 OG).

It should be noted that the prior exploration on Sketchpad showed that OG = GH,

which suggested that LHNO was a parallelogram and easily led to the eventual proof given

above. This example therefore shows that experimentation can also be useful in providing

valuable clues for the production of deductive proofs.
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Generalizing the Euler line to cyclic pentagons
Since any cyclic polygon has a circumcenter and centroid, it seemed natural to further suspect

that Theorems 1 and 4 could be generalized to cyclic polygons. Subsequent investigation of a

cyclic pentagon with Sketchpad provided experimental confirmation, and the motivation to look

for a proof.

Theorem 5
The orthocenter (H), circumcenter (O) and centroid of a cyclic pentagon are collinear, and the

centroid divides the segment OH in the ratio 2:3.

Proof
Construct the respective centroids A', B', C', D'  and E' for each of the five quadrilaterals

(BCDE, CDEA, DEAB, EABC, and ABCD) into which the pentagon ABCDE can be divided

(see Figure 5). In the same way as in Theorem 4, it now follows that A'B'C'D'E' is

homothetic to ABCDE with a scale factor of 
1

4
, with center of similarity at G. As before, G is

defined as the centroid of the whole pentagon.

Construct the respective orthocenters A'', B'', C'', D'' and E'' for the same five

quadrilaterals into which the pentagon can be divided. From Theorem 4, we have for each of

these cyclic quadrilaterals that its respective centroid bisects the segment connecting its

orthocenter with the common circumcenter O. Therefore, A''B''C''D''E'' is homothetic to

A'B'C'D'E' with a scale factor of 2, with center of similarity at O. The circumcenter O'' of

A''B''C''D''E'' is now defined as the orthocenter of the whole pentagon.

Under the first similarity with G as center, O maps to O' (the circumcenter of

A'B'C'D'E'); therefore OGO' is a straight line. However, under the second similarity with O

as center, O' maps to O''; therefore OO'O'' is a straight line, and are O, G and O'' collinear.
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From the first similarity, we have GO = 4GO'; therefore OO' = 
5

4
GO. From the second

similarity, we have OO'' = 2 OO' = 2(
5

4
GO) = 

5

2
GO. Therefore, GO'' = 

3

2
GO which is what

was required to prove.

In general, it is possible in the same way to prove that the centroid of any cyclic n-gon

is collinear with its circumcenter and orthocenter, and divides the segment joining the

Although Theorem 2 is probably not original, it does not seem to appear in the

mainstream mathematical literature. Theorems 4 and 5 appear as problems in [5], but the proof

of Theorem 4 in this article is distinctly different. To myself as author, however, they were

original discoveries, which demonstrated the dynamic interplay between conjecture,

experimentation and proof. In themselves, the results are also interesting enough to be better

known.

Note:  Zipped Sketchpad sketches illustrating some of the results discussed in this article can

be downloaded from     http://mzone.mweb.co.za/residents/profmd/maltitudes.zip    
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circumcenter to the orthocenter in the ratio 2 : (n - 2). (Please see correction below) .       

Correction: with the advantage of hindsight, what I've defined here as the 'orthocenters'of 
a cyclic quadrilateral and cyclic pentagon respectively, more appropriately correspond to 
the ninepoint/Euler center E of a triangle, with the orthocenters H then simply defined as 
being collinear with O, G and E so that HE = EO. 
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